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Abstract 
 
Future requirements may dictate the need for 
very large spacecraft architectures.  At present, 
the only approach to placing large spacecraft 
into orbit is use of a heavy lift launch vehicle.  
But, given the new capabilities demonstrated by 
NASA’s DART, and DARPA’s Orbital Express, 
RASCAL, and FALCON, it is reasonable to 
envision an alternative means of placing large 
spacecraft into orbit, that being multiple 
responsive launches of discrete modules which 
are later assembled on orbit.  An analysis was 
performed to compare the risks and benefits of 
single large spacecraft launch versus a multiple 
small module launch approach.  The results of 
this probabilistic analysis show that fragmenting 
a system into modules can significantly reduce 
the deleterious cost and schedule impact 
incurred by possible failures.  In short, a single 
launch of a monolithic spacecraft poses 
significant risk;  should failure of a large 
spacecraft launch occur, the penalty is the 
significant sum total of both launch and 
spacecraft costs.  By comparison, there remains 
some finite risk of failure for each launch of a 
smaller fragmented spacecraft module, but the 
impact of failure of a given launch is less 
severe.  The analysis finds that the “assured” 
total life cycle cost for sum of all required 
modular launches can be nearly a factor of two 
less than the total “assured” life cycle costs for a 
single launch of a large spacecraft with the same 
capability.  Here, “assured” is defined as when 
the cumulative probability of mission success is 
99.9%.  Additional benefits using the modular 
launch approach are realized because of 
production learning effects and the real value 
provided by the flexibility of a serviceable and 
scalable architecture. 

 

Introduction 
 
My ventures are not in one bottom trusted, 
Nor to one place; nor is my whole estate 
Upon the fortune of this present year; 
Therefore, my merchandise makes me not sad 
Shakespeare, The Merchant of Venice, Act I, Scene 1 

 
Don’t put all your eggs in one basket:  this bit of 
advice is a golden rule of risk management.  A 
more scholarly and succinct way of saying the 
same thing is to state, “diversify.”  
Diversification is a fundamental precept in the 
arena of investment.  In his seminal work, which 
was eventually awarded the Nobel Prize in 
Economics, Harry Markowitz provided the 
analytical framework which explains why and 
how a wise investor should choose an 
investment strategy based not solely on 
maximum return, but rather on a trade between 
efficient selection of the expected value of 
return and its variance (related to its volatility).i  
In Markowitz’s analysis, it is shown that 
“efficient frontiers” exist which allow one to 
maintain desired levels of return but minimize 
risk by an appropriate diversification of 
investment in a multitude of equities.ii 
 
Let us now turn to an analysis of how we, today, 
would invest in a large space system.  
Requirements for large transmission bandwidth, 
significant aperture sizes for sensing, and 
multiple mission capabilities may force 
spacecraft to very large sizes, possibly in excess 
of 10,000 kg.  Such a system by convention 
would be (a) constructed monolithically and (b) 
launched on a heavy lift launch vehicle.  Why 
do we do it this way?  Well, there appears to be 
no other way.  But, what if an alternate 
philosophical approach were taken?  First 
suppose, instead of constructing a monolithic 
spacecraft, the system were broken up into 
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distinct building blocks, i.e. modules.  There are 
many advantages to this approach.  Enhanced 
capability of on-orbit reconfiguration, upgrade, 
and replacement are among the benefits.  In 
addition, it may be physically impossible to find 
a launch vehicle with the capacity to launch a 
large new space system, so there would be no 
other choice than to fragment the system and 
then later assemble the modules on-orbit.  On-
orbit assembly is a daunting and currently 
expensive task; our current experience exists 
only with manned assembly at International 
Space Station.  Given our human spaceflight 
capability, such manned assembly can currently 
take place only in LEO – GEO type missions 
would require autonomous assembly capability.  
But new advanced technology demonstrations 
will begin to provide possible solutions to the 
challenging task of autonomous assembly of 
space structures.  DARPA’s Orbital Express and 
NASA’s Demonstration for Autonomous 
Rendezvous Technology (DART) programs will 
demonstrate automated rendezvous, docking, 
and (in the case of Orbital Express) repair and 
upgrade of in-orbit spacecraft.  Thus, we can 
assume that on-orbit rendezvous and assembly 
of modular systems are eventual possibilities.  
There probably will be some added cost due to 
complexity to the spacecraft, and it may also be 
more massive than the monolithic counterpart, 
but the flexibility provided by the system may 
provide significant value.  In addition, some 
very modular systems could provide capabilities 
impossible with monolithic counterparts (e.g. 
very large sparse arrays). 

 
Assuming now that modularization of a 
spacecraft is an eventual possibility, let us now 
turn to the second significant cost and risk 
component of the system, the launch vehicle.  
Even if we were to modularize a system, current 
economies of scale would dictate that we use the 
launcher with the greatest appropriate capacity.  
That is, one would most probably attempt to 
launch the greatest number of modules all at 
once.  But, this paradigm could change.  
DARPA’s Responsive Access Small Cargo 

Affordable Launch (RASCAL) and the 
DARPA/USAF Force Application and Launch 
from CONUS (FALCON) programs will 
develop and demonstrate space launch vehicles 
capable of rapidly and responsively placing 
small payloads into orbit at dramatically 
reduced costs.  So, assume that it is just as 
economical to launch the modules of a large 
space system on small launch vehicles.  In 
addition to the benefits of responsiveness, are 
there advantages to this approach?  The answers 
to this question are the theme of this paper – and 
are very much related to a Markowitz-like 
approach to investment.  By launching a large 
monolithic system on a heavy lift vehicle, one is 
putting all his eggs in one basket.  After 
sweating a twenty to thirty minute ride to space, 
most times the investors in a large space system 
are very happy, and have maximized their 
return.  But, the cost of variance is huge:  one 
strike and you are out of hundreds of millions 
and possibly billions of dollars, as well as the 
immediate capability required for market 
advantage or national security.  Compare this 
volatility to that encountered in a launch of just 
one small component of a space system:  the 
probability of loss of this component will be 
similar to that of a large monolithic system, but 
the impact of this potential loss will be less 
severe.  Of course, what is of interest is the 
volatility of the entire system, involving all 
required launches.  Analysis is thereby required 
to compare the expected return (actually cost, 
with revenue held constant) and the variance of 
a space system with varying degrees of 
modularization. 

 
The analysis which follows examines the 
hypothesis that risk – as measured by the 
standard deviation of lifecycle cost - can be 
reduced by a diversified strategy towards 
placing a large space system into operation.  
This diversification is accomplished by means 
of “fractionation” of a space system into 
modules and then launching those modules 
individually on smaller scale launch vehicles.  
Scaling inefficiencies due to modularization 
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may occur and cost penalties associated with 
organic rendezvous and docking capability 
might exist.  But, advantages brought about by 
production learning effects may exist.  The 
impacts these factors have on the expected value 
of life cycle cost are examined in the course of 
this analysis. 
 

 
Approach 
 
The approach of this paper will be to model the 
costs of both large, monolithic spacecraft with 
some given capability and a large “fractionated” 
modular space system with identical capability.  
This analysis will concentrate on the non-
recurring expense (NRE) of both types of 
approaches; operating costs (OC), will not be 
included as part of this analysis. It is typical for 
large space systems that OC are small as 
compared to NRE, hence it is assumed 
throughout this analysis that NRE for the space 
system (NREsystem) and Lifecycle Costs (LCC) 
are equivalent, i.e., 
 

LCCNREsystem ≈  (Eq. 1) 
 
Once cost models for the monolithic and 
modular systems are determined, some 
assumption will be made to create a universal 
costing scheme, valid for either architecture. 
 
 
Monolithic Spacecraft Cost 
 
Assume a large monolithic spacecraft, with the 
characteristics shown in Table 1. 
 

Table 1.  Large Monolithic Spacecraft 
Characteristics 

Monolithic Spacecraft 
Mass (wet) = M 
Capability=χ 
Non-Recurring Expense=NREmono 

χ represents the critical measurable system 
attribute, for instance total transponder 
bandwidth at some carrier frequency, or as 
another example, images per unit time at some 
given resolution.  The NRE for the monolithic 
system, NREsystem,mono, is assumed to be a direct 
function of spacecraft costs, CS/C, mono, and 
launch costs, Claunch, mono:  
 

( )monolaunchmonoCSlaunchesmonosystem CCNNRE ,,/, +=  
(Eq. 2) 

 
Eq. 2 accounts for the chance that more than one 
launch will be required to achieve mission 
success (e.g. due to a launch failure), thus the 
total number of launches, Nlaunches, required for 
mission success appears.  Ideally of course, 
Nlaunches=1. 
 
The two main components of NREmono can be 
determined as functions of spacecraft mass, M: 
 

monocpmmonoCS MSC ,,/ =  (Eq. 3) 
 

monocpmmonolaunch MLC ,, =  (Eq. 4) 
 
Where Scpm,mono and Lcpm,mono are the costs per 
unit mass of a large monolithic spacecraft and a 
heavy-lift launch of a  monolithic spacecraft  
respectively.  Note that a simplifying 
assumption is made here that Claunch,mono is 
expressed as a function of spacecraft wet mass, 
whereas parametric cost analyses would most 
typically rely on spacecraft dry mass for cost 
estimation relationships.  Combining Eq.’s 2-4 
therefore,  
 

( )monocpmmonocpmlaunchesmonosystem LSMNNRE ,,, +=  
(Eq.5) 

 
 
Modular Spacecraft Costs 
 
Now, consider a modular building block 
approach to orbiting a large spacecraft.  The 
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following assumptions apply to this modular 
approach: 
 

1. The new modular spacecraft is broken 
into “m” modules, n1, n2, n3, …. nm.  For 
purposes of further analysis, Nmodules.= 
m. 

2. Each module will be launched 
individually and then self assembled. 

3. Although all modules do not necessarily 
share the same functionality or 
capability, each module is of equal mass, 
and equal cost. 

4. Once all Nmodules are assembled the new 
spacecraft has the same on-orbit 
capability, χ, as the large monolithic 
spacecraft. 

 
The modular spacecraft has the following 
general characteristics: 
 
Table 2. Modular Spacecraft Characteristics 

Modular Spacecraft 
Total System Mass (wet) = Mm 
Module Mass (wet) = Mmodules 
Capability= χ 
Non-Recurring 
Investment=NREsystem,modular 

 
Note that since Mm is simply the sum of the 
mass of all modules,  
 

ulesulesm MNM modmod=  (Eq.6) 
 
The non-recurring cost of the modular system, 
NREsystem,modular, can be computed using Eq. 2 as 
an analogue, that is: 
 

( )ularlaunchularCSlaunchesularsystem CCNNRE mod,mod,/mod, +=
 (Eq. 7) 

 
CS/C,modular  is the non-recurring cost of a given 
module and Claunch,modular  is the cost of launching 
an individual module.  Nlaunches are the total 
number of launches required so that Nmodules are 

orbited, docked, and achieve χ capability.  Since 
it is assumed that one module is launched at a 
time, ideally Nlaunches= Nmodules. 
 
As with the relationships derived for the large 
monolithic spacecraft cost elements, the 
modular spacecraft cost elements of Eq. 7 can 
be determined as function of module mass, 
Mmodules. That is,  

ulesularcpmularCS MSC modmod,mod,/ =  (Eq. 8) 
 

ulesularcpmularlaunch MLC modmod,mod, =  (Eq. 9) 
 
Where Scpm,modular and Lcpm,modular are the costs 
per unit mass of a module and an individual 
module launch, respectively.  Combing Eq. 6–8,  
 

( )ularcpmularcpmuleslaunchesularsystem LSMNNRE mod,mod,modmod, +=

 (Eq. 10) 
 
It can be assumed that the total mass of the 
modular system is simply equal to the mass of 
the capability equivalent monolithic spacecraft, 
with some mass efficiency factor for 
modularization applied.  Specifically, 
 

MM m α=  (Eq. 11) 
 
Where α is the mass modularization factor, 
which represents the scaling inefficiencies (α 
>1) realized when a spacecraft is broken down 
in modular pieces.  Note that it is plausible that 
α will be some direct function of Nmodules, 
increasing monotonically as a system becomes 
more fragmented due to packaging issues.  
There may exist cases with α<1, with α being 
inversely proportional to Nmodules:  Free flying 
distributed modular antenna or optical elements 
can be used to create a very large array.  In this 
case, the modules would make up array 
elements and are not connected by structure, 
which results in a very mass efficient design.  
Bekey has suggested that such a system could 
be orders of magnitude lighter than a more 
conventional space structure with the same 
capability (if such a conventional space 
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structure could be built!)iii.  It is understood of 
course that α=1 when Nmodules=1. 
 
Combining Eq.’s 6 and 11 then,  
 

ules
ules N

MM
mod

mod
α

=  (Eq. 12) 

 
 
Inserting Eq. 11 into Eq. 9 therefore, 
 

( )ularcpmularcpm
ules

launchesularsystem LS
N

MNNRE mod,mod,
mod

mod, +=
α

 (Eq. 13) 
 
Eq. 5 and Eq. 13 provide an initial framework 
for comparison of system costs for large 
monolithic and fractionated spacecraft.   
 
 
Comparing Monolithic and Modular 
Architecture Costs 
 
Spacecraft Costs 
 
Costs per spacecraft mass have been expressed 
for both a large unitary spacecraft and for 
fractionated modules, reflected respectively in 
the terms Scpm,mono and Scpm,modular.  It is now 
assumed that spacecraft costs for both large and 
small-scale spacecraft systems (assuming 
equivalent complexity) are about the same.  The 
assumption is reasonable; for example, the 
reasonable costs of a large DOD spacecraft with 
a mass of 10,000 kg are about $1B.  
Comparatively, a small DOD spacecraft with a 
mass of 100 kg and same technical complexity 
is about $10M.  In both cases, the cost per unit 
mass of either spacecraft is $100,000/kg.  It is 
appropriate therefore that costs, on a per mass 
basis, of a spacecraft module can be assumed to 
be equal to those of large spacecraft (i.e. 
Scpm,mono = Scpm,modular.), with two exceptions:   
 

1. Production learning effects will act to 
reduce the costs of modules 

manufactured after the first production 
unit. In general, production learning is 
modeled by the following equations: 

 
baxy =  (Eq. 14) 

 

)2ln(
)ln(LFb =  (Eq. 15) 

 
 Here, in Eq. 14,  “y” represents the price 

of the “x”th unit, where first unit costs 
are “a”.  “b” is the production learning 
function, and can be determined using 
Eq. 15, where “LF” is the learning 
factor.  LF represents the percentage 
costs of a second unit relative to first 
unit costs.  For example, an LF of 0.85 
denotes that the second unit costs are 
85% those of the first production unit.  
Using this approach, an average unit 
cost, ybar, given m units produced, can 
be computed with the aid of the 
following relation: 

 

m

ax
y

m

x

b∑
== 1  (Eq. 16) 

 
 Realistically, production learning is 

present only when there is a large degree 
of similarity between consecutively 
produced units or lots.  Arguably, with a 
modular system, there could be a 
baseline module bus for each module, 
with only the main “payload” of that 
module being distinct from any other. 

 
2. There will be a requirement for each 

module to robotically rendezvous and 
dock with the host modular system being 
populated.  This requirement will add 
additional non-recurring costs (here, 
docking operations are considered as 
part of NRE, not OC), whether the 
assembly is conducted inorganically or 



 
 

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 
Approved for public release. Distribution unlimited. 

organically (i.e., with or without a 
separate servicing agent).   
 

Given the above logic, the cost per unit mass of 
fractionated modules can be assumed to be 
equal to those costs of a large spacecraft, 
adjusted for production learning effects and 
adding normalized docking costs: 
 

monocpmmonocpmulesulesularcpm SSNNS ,,modmodmod, )()( γβ +=

 (Eq. 17) 
 
where β represents an average production 
learning factor and γ is a docking system cost 
penalty metric.  Eq. 17 notes that Scpm,modular is a 
function of the number of modules designed 
into the space system, Nmodules.  This 
dependence is created by β  With the aid of Eq’s 

14-16, β is determined by the following 
expression: 
 
 

[ ]
unitfirst

ularcpmules

ulesN

x

bunitfirst
ularcpm

SN

xLotS

−
=

−∑
=

mod,mod

mod

1
mod, )(

β  (Eq. 18) 

 
As shown in Eq. 18. β represents the average 
reduction in total cost of building Nmodules.,and 
(0<β<1) for Nmodules >1.  This calculation of β is 
a function of the cost per unit mass of the first 
unit module, Scpm,modular, first unit.  It is assumed 
that production learning is encountered in 
successive lot builds, where Lot(x) represents 
the lot number build of the xth unit.  Figure 1 
displays the behavior of β for a lot size = 10, 
parametric with various standard learning 
factors. 
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Figure 1.  Behavior of Average Production Learning Factor, β, as Function of Number of Modules to be 

Built.  Lot size = 10.
 
The second component of Eq. 17, γ, the docking 
system cost penalty, represents the percentage 
increase in spacecraft costs per unit mass to be 
added to nominal costs because a robotic 
docking and assembly requirement has been  
 

 
added to the space system, which is the case 
when Nmodules >1.  The value of γ will be 
influenced by the degree of complexity and 
precision required in the autonomous docking 
process.  There may exist a requirement for a 
mother spacecraft to accomplish the modular 

Increasing LF
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construction process; it can be assumed that γ 
would capture the additional cost of building 
and operating this mother spacecraft.  It is 
understood that γ=0 when Nmodules =1.  Unlike α, 
γ is most probably a weak function of Nmodules. 
 
Note that given previous assumptions and Eq. 
18 , for Nmodules =1, γ=0 and β=1.  Thus, from 
Eq. 17, Scpm,modular = Scpm,mono. In this case, Eq.’s 
5 and 13 are equivalent.  Therefore, this 
analytical framework allows a monolithic 
spacecraft to be modeled as one module, i.e., 
Nmodules=1.  It will be useful now to refer to 
spacecraft costs per unit mass in general terms, 
given as the term Scpm, where 
 

monocpmcpm SS ,=  (Eq. 19) 
 
Therefore, combining terms and rewriting Eq. 
17, 
 

( )γβ += cpmularcpm SS mod,  (Eq. 20) 
 
 
Launch Costs 
 
At present, small-scale launch systems cost at 
least four times more on a per mass basis than 
large scale launch systems.  For instance, an 
EELV launch vehicle, capable of orbiting about 
5,000 - 10,000 kg of payload, costs about 
$10,000/kg.iv A Pegasus launch vehicle, on the 
other hand, can orbit about 500 kg of payload 
with a cost of about $40,000 kg, or a factor of 
four greater than the large launch system.v  
DARPA’s FALCON Program SLV R&D effort 
has an objective of launching 100-1000 kg for 
no more than $16,500/kg.  RASCAL has a goal 
of less than $10,000/kg for a 75 kg (LEO) 
payload.  Assuming SLV and/or RASCAL lead 
to a small-scale launch system(s) with costs 
approximately equal to larger scale systems, the 
following approximation can be made: 
 

cpmmonocpmularcpm LLL == ,mod,  (Eq. 21) 
 

This is a significant assumption in this analysis, 
which will ultimately help to lead to an 
interesting result. 
 
Generalized Cost Analysis for Large Systems 
 
Given Eq’s 13, 20, and 21, the NRE cost 
relation for either  large monolithic systems, or 
large modular systems can be generalized by the 
relation:  
 

( )( )cpmcpmsystem LSMN
NNRE

ules

launches ++= γβα
mod

  

(Eq. 22) 
 
This relationship provides the analytical basis to 
compare the non-recurring systems expense, 
NREsystem, of spacecraft systems decomposed 
into any number of modules, Nmodules, including 
the case of a “module” size of one.   
 
Note the first term that appears in Eq. 22., 
Nlaunches/Nmodules, referred to hereafter as the 
“module assurance factor”, or N*.  The module 
assurance factor represents the fractional 
number of launches beyond the nominal 
minimum required to place a large monolithic 
space system into operation.  Replacing 
Nlaunches/Nmodules with N* then, 
 

( )( )cpmcpmsystem LSMNNRE ++= γβα*  (Eq. 23) 
 
N* will be shown to be a random variable which 
depends on Nmodules and the probability of 
success of each individual module. 
 
The minimum number of launches for a given 
architecture is of course Nmodules; and in this 
case, N*=1.  This special case can be referred to 
as the ideal case, in which N*=N*ideal.  It is 
useful as well to refer to an ideal NREsystem 
metric.  The reference ideal cost is assumed to 
be for the case of the monolithic system, in 
which N*=α=β=1 and γ=0.  Therefore,  
 

( )cpmcpmidealsystem LSMNRE +=,   (Eq. 24). 
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As stated, N* is a random variable. To further 
explore the behavior of N*, use of binomial 
probability theory is required. 
 
 
Negative Binomial Probability Distribution 
 
When considering the attempt to place a given 
module into operation and then have that 
module operate for some pre-determined 
lifetime, there can be assumed to be a 
probability of success, pS, where 
 

DOLs pppp =  (Eq. 25) 
 
where pL is the probability of success in launch, 
pD is the probability of success in docking pO is 
the probability of successful module operation 
for an assumed system lifetime.  It is assumed 
that pL, pO, and pD are independent of all prior 
and future events and are constant, hence, pS for 
all modules is the same.  This is somewhat of a 
simplification.  First, some systemic reliability 
or quality problem could cause any of number 
of successive probabilities to be inter-related.  
Second, some failure modes of a module or a 
docking operation could result in partial or 
complete failure of the system of previously 
assembled modules.  Finally, pD = 1 for the first 
module (for all values of Nmodules) since no 
docking is required.   
 
Given pS for each module, the question then is 
what is the probability of total mission success 
(Nmodules inserted and docked), pm, given some 
number of launches for some (constant) number 
of modules designed into the system.  Note that 
“mission success” is defined here to be achieved 
when χ capability is initially provided.   
 
The launch, docking, and lifelong operation of a 
module can be modeled as a simple Bernoulli 
trial, with the outcome being either a success, or 
a failure.  Of pertinence in modeling the 
behavior of Nlaunches then is the negative 
binomial distribution;  the negative binomial 
distribution is the probability distribution of the 

number of trials needed to get a fixed (i.e., non-
random) number of successes in a Bernoulli 
process.  This distribution is given by the 
following: 
 

rxr
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xp −−







−
−

= )1(
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)(  (Eq. 26) 
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 (Eq. 27) 

 
In Eq. 26, pr(x) is the discrete probability that 
the rth success occurs in x trials, where each trial 
has an independent probability of success of p.  
The mean, µ (also referred to as the expected 
value), and standard deviation, σ, of this 
probability function are given as follows: 
 

p
r

=µ  (Eq. 28) 

 
 

p
pr s )1( −

=σ  (Eq. 29) 

 
 

The Probability Distribution of N* 
 

In the above description, the number of 
successful trials required, r, is equal to the 
number of modules in the system, Nmodules.  The 
random variable x is simply the number of 
launches required to succeed, which is Nlaunches.  
The probability of success for each trial, as 
given before, is ps.  Therefore, substituting 
terms into Eq. 26,  
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To reiterate, this equation provides us the 
following information:  suppose you design a 
space system fragmented into Nmodules., with each 
module having a probability of success from the 
moment of launch until the end of its lifetime of 
ps. Pick a given number of launches 
Nlaunches,(equal to or greater than Nmodules,of 
course).  By plugging all three of these variables 
into Eq. 30, the probability of mission success 
for the entire system (i.e. all Nmodules 
successfully launched, docked, and operated for 
mission lifetime) can be determined. 
 
The mean and standard deviation of the number 
of launches required for success can be 
determined by substitution of variables into 
Eq.’s 28 and 29: 
 

s

ules
Nlaunches p

Nmod=µ  (Eq. 31) 

 
 

s

sules
Nlaunches p

pN )1(mod −
=σ  (Eq. 32) 

 
 
Using Eq. 30, the probability distributions –
more appropriately referred to as the Probability 
Mass Functions (PMF’s) of Nlaunches required to 
achieve total mission success, given a system 
size of Nmodules., can be determined.  Assuming 
for instance a ps of 0.92, the curves in Figure 2 
are generated. 
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 Figure 2.  PMF’s for Nlaunches, Given Required Successes is Nmodules.  Assumed ps=0.92. 

 
For example, it shows that for a module size of 
40, there is a probability of approximately 0.2 
that exactly 43 launches (in this case, the mode, 
or most frequent value, of the distribution) will 
succeed in lifelong mission success of the space 
system  There likewise exists a cumulative 

probability of placing 40 modules into operation 
with no more than 43 launches, i.e. 
pm(Nlaunches<43 | Nmodules=40).  This is equivalent 
to the sum of the individual mission success 
probabilities of Nlaunches =40, 41, 42, and 43.  In 
this case, pm(Nlaunches<43 | Nmodules=40) = 0.54.  

Increasing Nmodules
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Also note that from Eq. 31, the expected number 
of launches required to place 40 modules into 
orbit successfully is 43.5 (close to the mode, 
which is as to be expected, since the distribution 
is mound-like).   
 
It can be interpreted from the figure that there is 
a decreasing probability that N*= N*ideal as 
Nmodules increases. For example, for Nmodules = 1, 
pm(Nlaunches= Nmodules) = 0.92, whereas for 
Nmodules = 20, pm(Nlaunches= Nmodules) = 0.19.   
 
The above results are interesting, but not 
conclusive.  Recall from Eq. 23 that it is the 
launch assurance factor, N*, that ultimately 
dictates the behavior of NREsystem.  Thus, it is 
the probability distribution of N*, not Nlaunches, 
that is of ultimate concern.  A simple step is 
involved here.  Since for a given system the 
term Nmodules is some constant (say “n”), the 
probability of achieving the required number of 

successes for the term N* is the same as for 
Nlaunches alone, that is 
 

( ) ( )nNNpnNNp ulesmuleslaunchesm === modmod |*|
(Eq. 33). 

 
The bottom line is that the PMF’s of the 
function N* can be determined using Eq. 30 for 
a given Nmodules, based on the appropriate value 
of Nlaunches.   For example, for Nmodules=40, it was 
shown that pm=0.2 when Nlaunches=43, that is, 
pm(Nlaunches=43 | Nmodules =40)=0.2.  For this 
specific case, N*=43/40=1.08.  Therefore, using 
the identity given in Eq. 33, pm(N*1.08 | Nmodules 
=40)=0.2.  Using this logic, the PMF’s of N* for 
various Nmodules can be determined.  Selected 
results are shown in Figure 3. 
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Figure 3.  PMF’s of N* to Achieve Nmodules Successes, ps=0.92. 

 

Increasing Nmodules 
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The curves in Figure 3 are created by simple 
transformation of those equivalent curves 
provided in Figure 2:  For points on each curve 
of Figure 2, the appropriate x value of N* is 
substituted for the value of Nlaunches, while 
ordinate values remain the same.  These curves 
represent PMF’s for N* parametric in Nmodules.  
Each PMF indeed contains all possible 
outcomes, i.e. the cumulative probability 
represented by each PMF goes to 1.0.  This is 
not intuitive since each curve does not contain 
equal areas.  But, remember that these curves 
represent discrete, not continuous, functions.  
For instance, the Nmodules=1 curve contains 3 
possible values (1,2,3) for 1.0<N*<3.0, whereas 
the Nmodules =100 curve contains 16 possible 
values (1.00, 1.01, 1.02…1.15) from 
1.0<N*<1.15. 
 
The intriguing behavior of this distribution is 
the significant reduction in variability of N* 
with increasing Nmodules., as shown by the 
narrowing of each PMF curve for increasing 
numbers of modules designed into a 
hypothetical system.  For a module size of 1, 
note that there is a high probability – 0.92 in 
fact - that only one launch will be required for 
mission success.  But – there is small, but non-
trivial probability of about 0.075 that two 
launches (and hence two monolithic spacecraft) 
will be required to achieve mission success.  In 
this case, the result would be a doubling of 
required NREsystem.  Even worse – there is an 
obvious finite chance that N* is three!  On the 
other hand, for a large module size of 50, for 
example, it can be seen that to cover most 
possibilities, a maximum number of launches 
1.2 times the number of modules (that is, 60) 
will be required (note the correspondence with 
Figure 2).  To be specific, pm(N*<1.2| 
Nmodules=50) = 0.993.  Note that for the 
monolithic system, pm(N*<2.0| Nmodules=1) = 
0.994.  The implications (ignoring contributing 
effects of α,β, and γ) here are that there exists a 
maximum likely variation – i.e. risk – of a 20% 
increase in NRE for system composed of 50 
modules, compared to a maximum likely 
variation of a 100% increase in NRE for a 

monolithic system given a ps for each module of 
0.92..  These results are somewhat trivial really 
– gut instinct tells us not to “put all eggs in one 
basket”.  Figure 3 is nothing more than a simple 
illustration of the value of reducing potential 
losses by something similar to diversifying 
investment.  In this case, by increasing the 
degree of modularization in a large space 
system and by launching all modules separately, 
the impact of failure is diminished, and 
therefore risk is reduced. 
 
As an aside, a ps of 0.92 has and will be used in 
many examples because it is believed to be a 
good predictive estimate of large launch vehicle 
reliability (and the same figure is maintained for 
small launch vehicle reliability for comparative 
purposes).  Descriptive statistical data show that 
the realized success rate for the heavy lift 
vehicles falls between 0.70 (Ariane 5) and 0.91 
(Titan 4).  EELV’s have thus far shown a 
perfect success rate, but it is less conservative to 
use such descriptive data for predictive purposes 
of risk analysis.  Guikema and Paté-Cornell 
have recently shown using Bayesian analysis 
that posterior estimates of mean future 
frequencies of success are relatively low for 
launchers with a limited history.vi  For example, 
a launch vehicle that has a mission success rate 
of 100% in two launch attempts still only has a 
mean future predictive success rate of about 
0.85. 
 
Since the term Nmodules is a constant for each 
case considered, the expected value and 
standard deviation of N* can be found by 
dividing Eq’s 28. and 29 by Nmodules : 

s
N p

1
* =µ  (Eq. 34) 

 

ules

s

s
N N

p
p mod

*
)1(1 −

=σ (Eq. 35) 

 
Note that from Eq. 34, the expected value of N* 
is constant for all values of Nmodules, depending 
only on independent probability of successful 
module operation, ps.  Given ps = 0.92, 



 
 

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 
Approved for public release. Distribution unlimited. 

µN*=1.09, which corresponds to the observed 
behavior in Figure 3.  From Eq. 35, the standard 
deviation of N* is inversely proportional to the 
square root of Nmodules, which again corresponds 
to the behavior of the curves shown in Figure 3.  
Note that these results provide more insight into 
the impact of modularization on reduced 
variability of relative number of required 
launches.  In the most recent example, the 
expected valued of N* is 1.09 for both Nmodules 
=1 and Nmodules =100.  For the Nmodules=1 
case, N* will take on discrete values of 1+n, 
where n is an integer, (0<n<∞).  That is, N* will 
most likely be 1, but sometimes 2, and possibly 
3.  On the other hand, for Nmodules =100, N* can 
take on discrete values of 1 + 0.01n.   Therefore, 
in this case, an N* of the mean 1.09 can actually 
occur (when Nlaunches=109).  Thus, it can be seen 
that there is a quantization effect that results in 
less absolute variation of N* as Nmodules 
increases. 
 
It is convenient to encapsulate the important 
elements of the preceding observations in an 
overarching framework.  It will be useful to 

determine the “assured” value of N* - referred 
to as N*assured - as a function of both Nmodules and 
ps.  N*assured is chosen to be the expected value 
of the mission assurance function plus 3 
standard deviations, i.e. 3-sigma.  For mound-
like distributions, the 3-sigma confidence limit 
encases 99.9% of all possible outcomes.  PMF’s 
distributions shown for N* are skewed and do 
not become mound-like until approximately 
Nmodules >30.  In any case, the approximation is 
made that N*assured represents the 99.9% 
cumulative probability, or assurance, of all N* 
possibilities, regardless of the magnitude of 
Nmodules.  Subsequent results show that this is a 
good and proper approximation. 
 
From Eq.’s 34 and 35,   
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311 (Eq. 36) 

 
Values of N*assured as function of Nmodules and ps 
are plotted in Figure 4 below. 
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Figure 4.  Behavior of Launch Assurance Factor as a Function of Number of Modules in System 

and Independent Probability of Successful Module Insertion. 

N*assured

µN

Increasing Ps



 
 

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 
Approved for public release. Distribution unlimited. 

 
 
The following behavior is observed from Figure 
4: 
 

1. As Nmodules increases, the worst case N*, 
described by the function N*assured, 
decreases notably.  For example, for a 
ps=0.92, N*assured is approximately 2 for 
a monolithic system, whereas for a 
system composed of 100 modules, 
N*assured is approximately 1.18.   

2. As described by Eq. 23, µN* does not 
change with Nmodules for a given ps. 

3. As ps increases, the difference in 
N*assured between monolithic and highly 
modular systems decreases. 

4. As ps increases to what would be 
considered exemplary levels of 0.98, 
N*assured for a monolithic system is still 
45% above N*ideal. 

5. As ps increases, highly modular systems 
have an N*assured which approaches both 
µN* and N*ideal.  For example, for 
ps=0.98, N*=1.06. 

6. N*assured for highly modular systems with 
a relatively low reliability (e.g. ps =0.90) 
is still lower that for monolithic systems 
with a relatively high reliability (e.g. ps 
=0.98).  This behavior has larger 
implications;  Turner and Wertz have 
surmised that launch vehicles designed 
for a lower reliability will have much 
lower costs relative to other launchers 
with similar capabilityvii. 

 
 
Probability Distribution of NREsystem 
 
The observed characteristics of N* have 
profound implications, since space system cost 
and uncertainty are directly proportional to this 
figure as described in Eq. 23.  N* has been 
shown to be a discrete random variable, 
therefore NREsystem is a discrete random variable 
as well.  The PMF’s of NREsystem can be found 
by simply cross referencing each probability 

value of N* used in the calculation of NREsystem 
for a given Nmodules.  Mathematically, 
 

( ) ( ))(*)(*| modmod cNNpcNNNREp ulesmulessystemm ===

(Eq. 37) 
 
The expected value and standard deviation of 
each probability distribution of NREsystem can be 
found using Eq. 23: 
 
 

( )( )cpmcpmNNREsystem LSM ++= γβαµµ * (Eq. 38) 
 
 

( )( )cpmcpmNNREsystem LSM ++= γβασσ * (Eq. 39) 
 
 
where these expressions show the mean and 
standard deviation of NREsystem, respectively.  
Extending the concept of assured mission risk, 
substitution of N*assured into Eq. 23. will provide 
the value of assured NRE for the space system, 
represented by the term NREsystem,assured: 
 

( )( )cpmcpmassuredassuredsystem LSMNNRE ++= γβα*
,

(Eq. 40) 
 
The above analysis can be used to describe 
possible outcomes for space system NRE – and, 
from Eq. 1, approximate LCC – depending on 
various features of the system design 
architecture and production approaches.  These 
equations allow LCC to be modeled with 
improved determinism as compared to more 
conventional approaches.  Modularization has a 
significant impact on the expected and worst 
case values of LCC.  Specifically, 
 

1. Fragmenting the system into more 
modules has the effect of reducing the 
variability of the ratio of actual number 
of launches to the minimum and ideal 
number of launches, as shown by the 
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behavior of N*, which is directly 
proportional to NREsystem.  The degree of 
variation for N* between monolithic and 
a given modular system is reduced as the 
probability of module mission success 
(ps) is increased.   

2. Modularization may create scaling 
inefficiencies that result in total system 
mass for a modular system to be greater 
than that for a monolithic system.  This 
penalty has been represented by α; both 
µNREsytem and σNREsytem  increase in direct 
proportion to α, thereby offsetting gains 
in (1) previously.  Possible scaling 
efficiencies for large aperture systems, 
previously discussed, should not be 
ignored. 

3. Production learning effects, represented 
by β, could have the impact of reducing 
costs of modules after successful builds.  
The effect on NREsystem will depend first 
upon the degree of similarity between 
modules in the system, which will 
determine if and how much learning 
effect can be applied in the production 
process.  Once β is determined; the 
relation in magnitude between Scpm and 
Lcpm will then determine the effect of 
β on NREsystem.  For Scpm >> Lcpm, 
µNREsytem and σNREsytem increase in direct 
proportion to β.  On the other hand, if 
Scpm << Lcpm, the effect of production 
learning on NRE from spacecraft 
modules is nil. 

4. Additional costs will be incurred by 
forcing the fragmented components to 
have an autonomous and precise 
rendezvous and docking capability.  
Here, this penalty has been represented 
by the term γ.  µNREsytem and σNREsytem 
will increase in direct proportion to γ, 
which itself represents the percentage 
change in Scpm above a monolithic 
system that has no docking capability. 

 
From the above quantitative conclusions, it can 
be seen that the net effect on the expected value 
of LCC of a modularized spacecraft system will 
vary depending on the gains provided by 
production learning versus the losses realized by 
scaling and complexity costs.  Nonetheless, the 
impact of N* on NREsystem is significant; 
potential variability in space system cost is 
reduced as the degree of fragmentation is 
increased.   
 
A hypothetical case will help to illustrate the 
above observations. 
 
 
Example Comparison of LCC for a 
Monolithic and Modular System 

 
Assume that a large new space system has the 
characteristics given in Table 3. 

 
Table 3. Hypothetical Assumed Large Space 

System Characteristics. 
Characteristic Assumed Value 
M 10,000 kg 
Scpm $100,000/kg 
Lcpm $10,000/kg 
α 1.2 
γ 0.1 
LF* 85% 
Lot Size 10 
ps 0.92 
*Assumes extra modules produced as replacements due to failure do 
not count toward overall production total. 
 
Given the assumptions above, the following 
selected characteristics of two different system 
designs are derived from various equations 
provided previously: 
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Table 4. Hypothetical Derived Monolithic and ModularLarge Space System Characteristics. 
Characteristic Derived Value Reference 

Equation(s) 
CS/C,mono $1.0B 3 

 

Claunch,mono $100.0M 4 
Mmodule 1200 kg 12 
CS/C,modular

Lot#1 $132.0M 8,17,18 Nmodules=10 
Claunch,modular $12.0M 9,21 
Mmodule 120 kg 12 
CS/C,modular

Lot#1 $13.20M 8,17,18 
CS/C,modular

Lot#10 $9.74M 8,17,18 
Nmodules =100 

Claunch,modular $1.2M 9,21 
 NREideal $1.1B 24 

 
 
Given the values of Table 3 and using Eqs. 23 
and 37, PMF’s can be created which show the 
probability distribution of NREsystem for various 
architectures.  Assuming a ps of 0.92, selected 
PMF’s are shown in Figure 5.  Likewise, curves 
of µNREsystem, σNREsystm, and NREsystem,assured can 
be created using Eq.’s 38-40.  These curves are 
provided in Figure 6.   
 
The following observations are made for 
Figures 5 and 6: 
 

1. The behavior of the PMF distribution of 
NREsystem shown in Figure 5, where 
increasing the number of modules leads 
to a reduction in variation, is very 
similar to that previously shown for N* 
in Figure 3.  This is of course due to the 
direct relationship between the two 
variables. 

2. It is apparent from Figure 5, as 
compared to Figure 3, that the curve for 

Nmodules=2 is biased noticeably to the 
right.  As Nmodules increase, curves shift 
back to the left.  In other words, the 
mean of curves for Nmodules>1 jumps up 
and then gradually decreases. Details of 
this behavior are more apparent from 
Figure 6.  The cause of this phenomenon 
is twofold.  First, α and γ cause module 
inefficiencies which result in, for 
example, two modules with the same 
capability as a monolithic spacecraft to 
be more massive, complex, and therefore 
more costly than the monolithic system.  
Second, as the degree of fragmentation 
increases, production learning effects 
begin to drive down the costs of 
modules, thereby offsetting other cost 
penalties.  Note that the expected value 
of NREsystem for monolithic and highly 
modular (Nmodules =100) systems in this 
example are nearly equivalent. 
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Figure 5.  Probability Distribution of NRE to Achieve NREsystem, ps=0.92. 

 
3. In general, as shown in Figure 6, 

NREsystem,assured decreases monotonically 
as Nmodules increases.  There is one 
particular case where this is not true.  
For Nmodules=2 and ps=0.92, 
NREsystem,assured increases above that for 
Nmodules =1.  This behavior is once again 
caused by the increase in system cost 
due to α and γ effects.  Since the lot size 
in this example is 10, production 
learning effects are not captured for this 
module size (nor for Nmodules=2).  
Although there is N* advantage, the 
increased module cost results in an 

overall higher cost risk for the entire 
system.  It was noted earlier in that α 
may in fact increase with increasing 
Nmodules.  This type of behavior could 
result in a “bathtub” type of curve for 
both NREsystem,assured and µNREsystem.  In 
this case, some optimal and intermediate 
value or range of values of Nmodules 
would exist. 

 
This straw man example is a good illustration of 
the competing effects in cost and risk when 
considering modular systems. 

   
 

Increasing Nmodules 
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Figure 6.  Behavior of Mean and Assured Values of NREsystem as a Function of Number of Modules 

in System. 
 

 
Added Benefits of Modularization 
 
Thus far, it has been shown that the value in a 
modular space system approach is related to the 
reduction of cost risk.  There are other added 
benefits of modularization tied directly to the 
flexibility it provides both designer and 
operator.  deWeck et al. of MIT recently studied 
the value of stage deployed and orbital 
reconfiguration of a LEO personal 
communication (Iridium) constellation.viii  In 
this study, some initial operational capability for 
the system was provided to meet current 
demand by a small higher orbit constellation.  
As demand grew, more spacecraft were 
launched, and a new constellation was created 
by lowering the orbit of previously inserted 
spacecraft to that of the newly inserted 
spacecraft.  The outcome of this approach to 
development of a space system is that “Real 

Options” are provided to the designer.  These 
Real Options have a measurable dollar value; 
value increases as uncertainty of the set of 
future requirements goes up.  A large modular 
space system could similarly be developed in an 
incremental fashion.  Some initial capability 
could be provided after launch and insertion of 
core modules (of course, for some missions, the 
idea of incremental capability may be dubious).  
This initial capability could be provided at some 
time well before that possible for an equivalent 
monolithic system.  This initial capability would 
allow an evolutionary acquisition strategy, or in 
essence, a spiral development approach towards 
building a large space system.  As shown in 
deWeck’s study, the impact of evolutionary 
development is reduced risk and reduced life 
cycle cost. 
 

NREsystem,assured

µNREsystem 

Increasing Ps
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The modular system will inherently offer 
additional flexibility after initial operational 
capability (IOC).  Repair and upgrade of failed 
or technologically outdated subsystems will be 
easier with a system designed with a building 
block approach.  Saleh et al. have demonstrated 
that the flexibility offered from an on-orbit 
servicing architecture has real value.ix  Applying 
Real Options theory, the value of a serviceable 
architecture was shown not to be a function of 
cost, but rather intrinsically linked to future 
volatility and the revenue associated with the 
product of the spacecraft.   
 
In the analysis shown here, it was assumed that 
production learning effects could be applied to 
spacecraft systems, but not launch vehicles.  
Arguably, there will be learning effects with 
successive launch vehicle builds and/or 
operations (when considering reusable systems): 
such effects will act to drive down costs of 
launch.  So, for example, Eq. 23 would include 
a second β-like term applied to Lcpm.   
 
Another assumption applied in this analysis was 
that all module insertion attempts were mutually 
exclusive of all others, so ps remained 
unchanged.  In 1964, Duane of GE Company 
presented data to the IEEE showing that a 
“reliability learning curve” could be developed 
from empirical data for complex 
electromechanical systems, such as “complex 
aircraft accessories…[that]…follow a relatively 
simple and predictable pattern and are 
approximately inversely proportional to the 
square root of cumulative operating time.”x    
Satellite launch operations are so infrequent and 
each launch event so short that the effect of 
reliability learning is lost literally through 
generations of engineers.  Lessons learned are 
institutionalized.  Some lessons are 
remembered, others forgotten.   Recent 
experience shows that typical new launch 
systems suffer through an early campaign 
plagued by poor mission success performance, 
only to enjoy a success rate closer to that 
predicted by hard-core reliability analysis.  

Using Duane’s approach, one could model 
launch vehicle reliability as a function of the 
number of previous launches.  In this case, ps 
would increase with Nlaunches.  An “average” ps 
could be computed based on Nmodules and used to 
determine values of NREsystem,assured and 
pm(Nlaunches)  Otherwise, a Monte-Carlo 
approach would be required, since the binomial 
probability functions used assume a constant ps.  
Regardless, the net effect would be to make 
even more attractive modularization of space 
systems, as pL, pO, and pD would all show 
improvement with increasing Nmodules. 
 
 
Making Modularization More Attractive 
 
A key explicit assumption in this analysis has 
been that costs per unit mass for a small module 
launch were approximately the same as that for 
a very large space system.  An implicit, but 
equally important assumption, in this analysis is 
that the launch vehicle system, especially for a 
very modular system, is capable of high-flight 
rate.  Such high-flight rates would be required to 
enable timely insertion of the fragmented 
system.  Regardless, both assumptions require 
that Operationally Responsive Spacelift 
becomes a reality.  One point that must be 
emphasized: at present we cram as much onto 
one launch vehicle as possible to enjoy 
maximum rate of return.  So, why not just put a 
large number of modules onto a large, 
“economical” launch vehicle?  The problem 
with this approach is that the significant 
reduction in cost risk is lost: once again, all 
eggs, or at least a large number of them, are 
placed into one basket. 
 
The other major challenge assumed solved in 
this analysis is the demanding task of 
robotically building a space system on-orbit.  
Using a conventional approach, “connecting” 
modules together on-orbit requires not only a 
mechanical interface and connection, but 
interface and connection of electrical and data 
systems as well.  There are several implications 



 
 

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 
Approved for public release. Distribution unlimited. 

for the presence of such interfaces, all of which 
drive up cost and cost risk: pD decreases, α and 
γ both will increase because of electrical and 
data interface requirements.  An interesting 
approach to help alleviate this issue would be 
the use of a wireless data and/or power 
architecture.  With such a system, there would 
potentially be no need for electrical and data 
interfaces – the passage of all such information 
would be performed optically or by means of 
RF.  There would be other implications as well, 
including “virtual systems tests” of flying 
modules with those still in the production 
facility and the enhanced capability for organic 
rendezvous and docking processes.  In fact, 
mechanical connections could possibly be 
virtual as well, utilizing electromechanical force 
fields or specially applied orbits to maintain 
proper relative module position.  With such 
approaches, fragmented and loosely coupled 
space systems- connected only by information - 
are conceivable.  
 
Throughout this analysis, it has been assumed 
that each space system has been fragmented into 
modules of equal size.  For a given mission 
objective, it may prove in fact that the optimum 
architecture is one in which certain subsystems 
are built monolithically and others very 
modularly.  For example, it may prove that a 
law of comparative advantage exists whereby 
more capability, flexibility, reliability, etc. is 
provided by building a stand-alone power 
subsystem that is used by the entire space 
system.  It is cases like this that would still drive 
the need for launch vehicles with heavy lift 
capacity. 
 
Conclusions 
 

“1. Cost has replaced mission success as the 
primary driver in managing space development 
programs, from initial formulation through 
execution.  Space is unforgiving; thousands of 
good decisions can be undone by a single 
engineering flaw or workmanship error, and 
these flaws and errors can result in 
catastrophe…. 

“2. Unrealistic estimates lead to unrealistic budgets 
and unexecutable programs.  The space 
acquisition system is strongly biased to produce 
unrealistically low cost estimates throughout the 
process…..” 

 
Report to the Defense Science Board/Air Force Science 
Advisory Board Joint Task Force on Acquisition of 
National Security Space Programs, May 2003 

 
 
Space is indeed an unforgiving place.  
Architects and users of space systems know that 
the relentless environment of “Space” really 
begins the second a launch vehicle leaves the 
pad.  Through the past half-century, the harsh 
reality of “one-strike and you’re out” has set 
back many programs vital to both national 
security and stakeholders of commercial 
corporations.  For instance, past shareholders of 
Globalstar will probably well remember the day 
a Zenit launch vehicle, purchased because of its 
economy of significant capacity, crashed into 
the hinterlands of Kazakhstan carrying 12 
Globalstar spacecraft.  The time lost getting the 
system into initial operation did not help a 
program challenged by competing markets.  Of 
particular concern to national decision makers 
and taxpayers, is the significant risk posed by 
the problem of placing a very large space 
system into orbital operation.  Mission success 
must be the primary goal; cost should be 
minimized, yet cost must be held subservient to 
mission success.  A second issue with cost is 
determinism; as the Defense Science Board has 
pointed out recently, space system costing is too 
inaccurate; such inaccuracies put the success of 
the mission in peril, even well before hardware 
arrives at the launch base.  Couple this cost 
estimation issue with that of mission risk:  
should a mission fail, cost estimates are most 
probably off by a factor of 100%, since all eggs 
have been placed in one basket.   
 
There may exist a way out of this conundrum.  
New technologies and new systems may enable 
and enhance the capability to build large scale 
space systems using a fragmentized, modular 
approach.  This analysis has considered the 
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impact on cost and risk such an approach would 
have.  It was found in the course of this analysis 
that the most dramatic impact of large space 
system fragmentation is that the impact of single 
failures – be they with a launch vehicle or 
spacecraft – are less severe as the degree of 
fragmentation is increased.  The net effect is 
that the variability of total lifecycle costs is 
reduced for the space system.  Applying 
reasonable assumptions, it was shown by 
example that a highly modular system has an 
“assured” life cycle cost nearly half that of a 
monolithic large spacecraft.  There are issues to 
be dealt with, primarily relating to scaling 
inefficiencies of modules and the adding cost of 
docking capability.  But, assume that such 
inefficiencies and added costs are known.  
Using a cost and risk modeling approach like 
that offered here, decision makers can trade 
expected cost for reduced cost risk.  
Modularization also provides on-orbit flexibility 
for repair, replacement, and upgrade.  Stage 
deployed options are also possible.  Such 
flexibility results in Real Options for the user:  
these options have real value (not cost!) 
measurable in dollars.   
 
Just as Markowitz suggested there is no optimal 
solution for a portfolio, there is no optimal 
solution to the degree of modularization.  What 
is important is that decision makers have 
information that allows them to trade cost, risk, 
and value.  The analysis here provides a glimpse 
of a possible approach towards solving this 
problem. 
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